More shockwave events to worry about, in addition to peak oil and global warming

Summary:  about shockwaves, the various catastrophic threats to civilization — even to life on Earth.  There are so many, often with believers who warn that this threat deserves the most drastic action.  At the end is a recommendation, a better way to prepare.

Shockwaves:  low probability but high impact events.  Difficult to predict when they will hit.  Difficult to forecast their probability of occurrence.  Results:  perhaps catastrophic to civilization, to humanity, perhaps to life on Earth.

For mysterious reasons, some people focus on one specific shockwave scenario.  It’s potential for damage mesmerizes them, and — blind to other shockwave scenarios — they call for massive resources to prevent it or mitigate the resulting damage.   Peak oil and human-caused climate change are perhaps the major examples of this in our time, as pollution and atomic war were for the previous quarter-century.  Note that to many true believers the latter were almost-certain dooms, yet we seem to have avoided them with only moderate effort (both remain as threats, however).  Perhaps we were just lucky.

Another shockwave — from the sky

Here we briefly consider another “shockwave” — collision of a large meteoroid, asteroid or comet (generically: bolides) with the Earth.  For background see the entry on impact events on Wikipedia.

This post does not compare different shockwaves scenarios — AGW vs. asteroids vs. super-volcano eruptions.  That would be valuable, but requires a multi-disciplinary team of experts (see my recommendation at the end of the post).  The intent here is to remind ourselves that this is a dangerous world containing many threats.  We must not let awareness of some threats blind us to the others.

1.  Mega-tsunamis more common than we think“, ABC 16 November 2006 — Like so many articles about shockwaves, they allude to “critics” who dispute the danger, but do not actually quote any — or describe the basis for their skepticism.

2.  The Sky Is Falling“, Greg Easterbrook, The Atlantic, June 2008 — “The odds that a potentially devastating space rock will hit Earth this century may be as high as one in 10. So why isn’t NASA trying harder to prevent catastrophe?”  Excerpt:

{Dallas} Abbott believes that a space object about 300 meters in diameter hit the Gulf of Carpentaria, north of Australia, in 536 A.D. An object that size, striking at up to 50,000 miles per hour, could release as much energy as 1,000 nuclear bombs. Debris, dust, and gases thrown into the atmosphere by the impact would have blocked sunlight, temporarily cooling the planet-and indeed, contemporaneous accounts describe dim skies, cold summers, and poor harvests in 536 and 537. “A most dread portent took place,” the Byzantine historian Procopius wrote of 536; the sun “gave forth its light without brightness.” Frost reportedly covered China in the summertime. Still, the harm was mitigated by the ocean impact. When a space object strikes land, it kicks up more dust and debris, increasing the global-cooling effect; at the same time, the combination of shock waves and extreme heating at the point of impact generates nitric and nitrous acids, producing rain as corrosive as battery acid. If the Gulf of Carpentaria object were to strike Miami today, most of the city would be leveled, and the atmospheric effects could trigger crop failures around the world.

At the start of her research, which has sparked much debate among specialists, Abbott reasoned that if colossal asteroids or comets strike the sea with about the same frequency as they strike land, then given the number of known land craters, perhaps 100 large impact craters might lie beneath the oceans. In less than a decade of searching, she and a few colleagues have already found what appear to be 14 large underwater impact sites. That they’ve found so many so rapidly is hardly reassuring.

Other scientists are making equally unsettling discoveries. Only in the past few decades have astronomers begun to search the nearby skies for objects such as asteroids and comets (for convenience, let’s call them “space rocks”). What they are finding suggests that near-Earth space rocks are more numerous than was once thought, and that their orbits may not be as stable as has been assumed. There is also reason to think that space rocks may not even need to reach Earth’s surface to cause cataclysmic damage. Our solar system appears to be a far more dangerous place than was previously believed.

3.  Letter in response to Easterbrook’s article, Prof Nicholas Pinter and Assoc Prof Scott Ishman (Geology, Southern Illinois University), The Atlantic, September 2008:

Gregg Easterbrook paints a vivid picture of impending cataclysmic impacts and urges a massive repositioning of government funding toward asteroid defense. Easterbrook is a distinguished science journalist, but he has spun a sensational Chicken Little story. His article suggests that the probability of a “devastating” Earth impact this century is as high as one in 10. Multiple research studies based on craters, atmospheric strikes, and counts of near-Earth objects suggest probabilities hundreds to thousands of times lower.

The difference between catastrophic Earth impacts every 300,000 years and every 1,000 years is the difference between an infinitesimal threat and looming Armageddon. Guided mostly by solid science, NASA and other national and international agencies have prioritized their programs rationally—monitoring near-Earth objects but not massively shifting resources to some Star Wars–style defense system aimed upward.

Historical and geological records stretching back thousands of years indicate that floods, earthquakes, volcanoes, and tsunamis kill thousands of humans worldwide on a regular basis. In contrast, there’s no evidence that any human anywhere has ever been killed by an extraterrestrial impact. Societies do little enough to mitigate the real and pressing threats from earthly natural hazards without shifting resources to imagined dangers from the wild fringes of the solar system and the wild fringes of science.

4.  Sandia supercomputers offer new explanation of Tunguska disaster“, Sandia National Laboratories, 17 December 2007 — “Smaller asteroids may pose greater danger than previously believed.”  Esp note the videos!   Excerpt:

The stunning amount of forest devastation at Tunguska a century ago in Siberia may have been caused by an asteroid only a fraction as large as previously published estimates, Sandia National Laboratories supercomputer simulations suggest.

“The asteroid that caused the extensive damage was much smaller than we had thought,” says Sandia principal investigator Mark Boslough of the impact that occurred June 30, 1908. “That such a small object can do this kind of destruction suggests that smaller asteroids are something to consider. Their smaller size indicates such collisions are not as improbable as we had believed.”

Because smaller asteroids approach Earth statistically more frequently than larger ones, he says, “We should be making more efforts at detecting the smaller ones than we have till now.”

Note:  This is the press release describing “Low-altitude airbursts and the impact threat”, International Journal of Impact Engineering, M.B.E. Boslough and D.A. Crawford, December 2008 — Subscription or purchase only.  Abstract and link available here.

There are other shockwaves from the sky!

Severe Space Weather Events – Understanding Societal and Economic Impacts“, National Academy of Sciences, 2008 — Hat tip on this to Erasmus.  Excerpt:

Because of the interconnectedness of critical infrastructures in modern society, the impacts of severe space weather events can go beyond disruption of existing technical systems and lead to short-term as well as to long-term collateral socioeconomic disruptions. Electric power is modern society’s cornerstone technology, the technology on which virtually all other infrastructures and services depend. Although the probability of a wide-area electric power blackout resulting from an extreme space weather event is low, the consequences of such an event could be very high, as its effects would cascade through other, dependent systems.

… we begin with a description of the magnetic superstorms of August-September 1859, by some measures the most severe space weather event on record. {approximately four times larger than anything seen in the past 50 years}. Known as the Carrington event, the 1859 storms were referred to throughout the workshop as an example of the kind of extreme space weather event that, if it were to occur today, could have profound societal and economic consequences, with cascading effects throughout the complex and interrelated infrastructures of modern society.

… The disruption of the telegraph system in 1859 caused problems in communication, but because modern society is so dependent on large, complex, and interconnected technical systems — and because these systems not only are vital for the functioning of the economy but also are vulnerable to electromagnetic events — a contemporary repetition of the Carrington event would cause significantly more extensive (and possibly catastrophic) social and economic disruptions.

About shockwaves

As said on this post many times (originally here) Studying them individually tells us little, as the correct public policy response is “so what?” Shockwave analysis is useful only with analysis of the scenario’s impact AND probability. Otherwise these are just nightmares.

Today analysis of shockwaves is done almost exclusively by special interest groups (often academic or non-profits). We allocate resources to shockwave scenarios based on several factors:

  1. the group’s access to elite opinion,
  2. the group’s ability to raise funds,
  3. their degree to which their shockwave resonates with the public.

Many studies have shown the people have little grasp of these kind of issue, and less understanding of the relevant statistics (probability and risk). There is a better way to do this. Allocation of our limited resources towards these require sketching out (as best as can be done) the full universe of such dangers.

A modest suggestion about applying the precautionary principle to prepare for shockwaves

The precautionary principle is usually applied in an irrational manner to individual threats, such as climate change.  There are  many high impact – low probability threats, which I call “shockwaves”.  Also, the US and world have many mundane needs that deserve funding.   Since resources are finite, we must access their relative importance — which few of these special interest groups around each shockwave bother to do.  I discuss this in greater length at this post; here is my suggestion:

Commission a group to collect as many shockwave scenarios as possible, with a brief analysis of each. Fortunately there are thousands of interest groups willing to pitch in and help! Then apply a common analytical framework to rate them on both dimensions: probability and impact. The results would prove quite interesting, and allow more rational public policy discussion about which to act upon.


If you are new to this site, please glance at the archives below.  You may find answers to your questions in these.

Please share your comments by posting below.  Per the FM site’s Comment Policy, please make them brief (250 words max), civil, and relevant to this post.  Or email me at fabmaximus at hotmail dot com (note the spam-protected spelling).

For more information from the FM site

To read other articles about these things, see the FM reference page on the right side menu bar.  Of esp relevance to this topic:

Posts on the FM site about shockwaves:

  1. Spreading the news: the end is nigh!, 8 May 2008
  2. The most dangerous form of Peak Oil<, 8 April 2008
  3. The “Oil Shockwave” project: well-funded analysis of the obvious, 10 April 2008
  4. Peak Oil Doomsters debunked, end of civilization called off, 8 May 2008
  5. What does $120 oil mean for the global economy?, 15 May 2008
  6. There is no “peak water” crisis, 19 June 2008
  7. A reply to comments on FM site about Global Warming, 17 November 2008
  8. We are so vulnerable to so many things. What is the best response?, 30 December 2008
  9. Comment:  warnings about a reversal of Earth’s magnetic field, 30 December 2008
  10. About our certain doom from the Yellowstone supervolcano, 11 January 2009

14 thoughts on “More shockwave events to worry about, in addition to peak oil and global warming

  1. Only gullible morons believe in Peak Oil or Global Warming. Are you Al Gore? You have lost all credibility.
    Fabius Maximus replies: I wish I was. Fame, (inherited) wealth! However I like the way you casually dismiss all the experts who bother to debate these issues among themselves. I guess they are just not as smart and knowledgeable as you!

    For those not living on the high reaches of genius as Mark, the FM reference pages link to articles by experts on both sides of these debates.
    * Science, Nature, and Geopolitics
    * Peak Oil and Energy – articles on the FM site
    * Peak oil and energy – studies and reports

    By the way, I know of no expert who believes that oil production will not eventually peak (the question is when), or that the world is not warming (at the very least, as we rebound from the little ice age; the question is about the causes and rate of current/future warming).

  2. Being from Miami, I surely hope it will hit the Antarctic.

    The simplest answer, of course, is to build our cities and infrastructures underground. This will mitigate a large part of the disasterous effect, plus contribute a fair amount to reducing overall energy needs. The surface should be used for extra growing surface area, adding to what is grown beneath the ground.

    But unlike lucky Kirk and the fact that an ancient civilization left behind gadgets that would fend off impacts {“The Paradise Syndrome“}, such technology is not even CLOSE to being developed today. The unreality of modern movies from Armageddon to Deep Impact lull us into the belief we could, with some time and planning, do something. Thus, the technology we do have — to live undergound but use the surface as our pristine playground — is so much more appealing on every level.

    Oh yes, and we need to get moving on that whole Mars thing, which will be the stepping stone to this quadrant of the galaxy.

  3. Part of the problem with high-impact, low-probability events is that they bring much emotional turmoil with them when they occur. This makes us care more about them them than the predictable and more mundane problems we face. Consider the response to 9/11 compared to the catastrophe of our health care system and the uninsured. In one case we are in a panic for two years and mobilize the nation to fight a perceived external threat. The health care system is just the way it is… even though studies show that it causes many more deaths than a 9/11 year in and year out.

    Uninsured and Dying Because of It: Updating the Institute of Medicine Analysis on the Impact of Uninsurance on Mortality“, Stan Dorn, Urban Institute, January 2008

    It might be even more difficult to allocate resources to deal with events contingencies that are unlikely to happen in our lifetimes in a rational manner.
    Fabius Maximus replies: Perhaps. But we get excited about so many threats these days, real and imaginary. Remember the hysteria over Alar following the 1989 “60 Minutes” broadcast? From Wikipedia:

    While Alar has been verified as a human carcinogen, the amount necessary for it to be dangerous may well be extremely high. The lab tests that prompted the scare required an amount of Alar equal to over 5,000 gallons (20,000 L) of apple juice per day. Consumers Union ran its own studies and estimated the human lifetime cancer risk to be 5 per million, as compared to the previously-reported figure of 50 cases per million.

  4. Re #2: The Japanese have done extensive work on planning underground and/or domed cities. Some plans I saw years ago for the underground cities included extensive mirroring networks allowing for sufficient underground crop cultivation should the surface be no longer workable.
    Fabius Maximus replies: Their women have solved that problem. With fertility almost 1/2 below replacement, their population is dropping (since 2005) — and unless things change, will do so at an accellerating rate. They already have the world’s highest median age.

  5. “NASA and other national and international agencies have prioritized their programs rationally”

    Having worked with NASA for years, I want to express my thanks for posting the funniest thing I’ve read in weeks. :)
    Fabius Maximus replies: While the actual quote is correct IMO about this narrow issue, speaking on a larger scale I totally agree with you!

  6. If workable, I think drawing together all the “shockwaves” and rating them according to liklihood of threat, cost of realization, possibility for defense, and cost of defense would do wonders for our ability to direct resources to maximize security.

    Unfortunately, we first must do one thing–stop rewarding the groups that write the scariest headlines. Under the current situation, I see those interest groups “pitching in” to help the commission instead fighting to the death to see their pet threat get top billing. The most obvious example is Global Warming where groups seem to compete to claim the highest damages–1 foot of sea rise! No 10 feet! No 100 feet!! We must do something or life on earth will end! Not just life as we know it, but all life!!!!!!

    Somehow, we have to stop that garbage first.

  7. In reply to comment 6.

    The scenario you describe below in this rather amusing quote….

    “The most obvious example is Global Warming where groups seem to compete to claim the highest damages–1 foot of sea rise! No 10 feet! No 100 feet!! We must do something or life on earth will end! Not just life as we know it, but all life!!!!!!”

    Results from how people get funded to do resarch. I’ve talked to some serious, legitimate scientists who buy into Global Warming as a moderately bad potential threat. They make a case for doing something far less dramatic and suicidal than Kyoto.

    They also research on shoe-string budgets because they haven’t gotten with the program and scared anyone.

    As for your idea about drawing together all the shockwaves and prioritizing them so we have SOPs and don’t jump out of our rectal orifices…it sounds like an application that cries out for quantum computing. This is exactly the sort of thing that a state-based model that allowed a simultaneous sampling of alternate outcomes could actually solve.

    Plus it would be a valid justification for scientific research money, and I don’t even have to frighten you to explain why.

  8. Have you wondered what the primary source of climate change is? If we care for our only home, the planet, and future generations, then please switch from a meat diet to a vegetarian diet. The need to act now is to avoid the devastating consequences of natural disasters. There is a connection between what we eat and climate change. The information, rationale and justification for switching immediately to a vegetarian diet has been provided by international organizations including the UN FAO, the University of Chicago scientists, NY Times, Animal Science Journal and other media journalists, the World Watch Institute, and so on. The vegetarian diet does not require future research and is readily available to everyone. For example, the 2006 UN FAO study disclosed that 80% of world emissions comes from agriculture or livestock production, which accounts for 70% of all agricultural land and 30% of the world’s surface land area. If 80% of world emissions comes from livestock production and we all switch to a vegetarian diet, then 80% of our climate change problems will be resolved in a very short period of time. For further information and clarification, please view the highlights of the “Global Warning! The Impact of Meat Production and Consumption on Climate Change” presentation delivered by the Chairman of the United Nations Intergovernmental Panel on Climate Change (IPCC) on 8 September 2008 by clicking on the website:

  9. {FM note: I have added material to this excellent comment}

    For a critic see proceedings Lunar and Planetary Science XXXIV (2003), “Impact-generated Tsunamis: An Over-rated Hazard“, H.J. Melosh, Lunar and Planetary Lab, Universary of Arizona — Excerpt:

    A number of authors have suggested that oceanic waves (tsunami) created by the impact of relatively small asteroids into the Earth’s oceans might cause widespread devastation to coastal cities. If correct, this suggests that asteroids > 100 m in diameter may pose a serious hazard to humanity and could require a substantial expansion of the current efforts to identify earth-crossing asteroids > 1 km in diameter.

    The debate on this hazard was recently altered bythe release of a document previously inaccessible to the scientific community. In 1968 the US Office of Naval Research commissioned a summary of several decades of research into the hazard proposed by waves generated by nuclear explosions in the ocean. Authored by tsunami expert William Van Dorn, this 173-page report entitled “Handbook of Explosion-Generated Water Waves” affords new insight into the process of impact wave formation, propagation, and run up onto the shoreline.

    … Careful reading of the report suggests that previous work on impact-generated tsunami has exaggerated the hazard posed by such waves.

    … COnclusion: The release of the Van Dorn report has saved the impact community a great deal of effort in categorizing the impact tsunami hazard. It appears that the defense community has already determined that explosion-generated waves are neither a serious threat nor a promising weapon. Although more work is needed on impact-generated tsunami, it appears that such waves generated by asteroids in the 100 to 1000 m diameter range may not pose as great a threat as previously believed.

    See also Van Dorn, W.G. et al, Handbook of Explosion Generated Water Waves, (Tetra Tech, Pasadena, CA, 1968) for the underlying theory. Back then they were considering the threat and use of nuclear devices to induce tsunamis as a weapon. The explosions are of similar potential scale.

    This report and some others are the basis for continuing the asteroid search focus on 1km and above threats.
    Fabius Maximus replies: Thank you for this valuable contribution.

  10. Thanks for your comment, Knight. You’re a bit beyond my pay grade with “state-based model that allowed a simultaneous sampling of alternate outcomes,” but if this is a real application that might be able to implement Fabius’ commission suggestion, then there’s more hope than I thought. I didn’t think there was any.

  11. {FM note: I have added more info to this valuable comment!}

    There are plenty of disasters which could bring an end to civilization. Don’t forget volcanoes (David Keys: Catastrophe): “Were the Dark Ages Triggered by Volcano-Related Climate Changes in the 6th Century? (If so, was Krakatau volcano the culprit?)“, Ken Wohletz (Los Alamos National Laboratory), EOS Trans Amer Geophys Union, 48(81), F1305 (2000).

    For more on this see Wikipedia on “Extreme weather events of 535–536” — Excerpt:

    The extreme weather events of 535–536 were the most severe and protracted short-term episodes of cooling in the Northern Hemisphere in the last 2,000 years.[citation needed] . The event is thought to have been caused by an extensive atmospheric dust veil, most likely resulting from a large volcanic eruption in the tropics though the exact location remains unknown. Its effects were widespread, causing unseasonal weather, crop failures and famines worldwide

    … David Keys in his book Catastrophe: A Quest for the Origins of the Modern World (1999) — supported by work of the American volcanologist Ken Wohletz — suggested that the Indonesian volcano Krakatoa exploded at the time and caused the changes. It is suggested that an eruption of Krakatoa attributed to the year 416 by the Javanese Book of Kings actually took place at this time – there is no other evidence of such an eruption in 416.

    {FM: although this Wikipedia entry does not mention it, the The Plague of Justinian followed this event: a pandemic that afflicted the Byzantine Empire, including its capital Constantinople, in the years 541–542 AD. From the Wikipedia entry:

    The most commonly accepted cause of the pandemic is bubonic plague, which later became infamous for either causing or contributing to the Black Death of the 14th century. Its social and cultural impact is comparable to that of the Black Death. In the views of 6th century Western historians, it was nearly worldwide in scope, striking central and south Asia, North Africa and Arabia, and Europe as far north as Denmark and as far west as Ireland. The plague would return with each generation throughout the Mediterranean basin until about 750. The plague would also have a major impact on the future course of European history. Modern historians named it after the Eastern Roman Emperor Justinian I, who was in power at the time and himself contracted the disease.

  12. Update

    On a slow day the media digs for stories in “Severe Space Weather Events – Understanding Societal and Economic Impacts“, National Academy of Sciences, 2008 (mentioned in this post). As we see in “Space storm alert: 90 seconds from catastrophe“, New Scientist, 23 March 2009 — Hat tip to Watts Up with That. Excerpt:

    It is midnight on 22 September 2012 and the skies above Manhattan are filled with a flickering curtain of colourful light. Few New Yorkers have seen the aurora this far south but their fascination is short-lived. Within a few seconds, electric bulbs dim and flicker, then become unusually bright for a fleeting moment. Then all the lights in the state go out. Within 90 seconds, the entire eastern half of the US is without power.

    A year later and millions of Americans are dead and the nation’s infrastructure lies in tatters. The World Bank declares America a developing nation. Europe, Scandinavia, China and Japan are also struggling to recover from the same fateful event – a violent storm, 150 million kilometres away on the surface of the sun.

    It sounds ridiculous. Surely the sun couldn’t create so profound a disaster on Earth. Yet an extraordinary report funded by NASA and issued by the US National Academy of Sciences (NAS) in January this year claims it could do just that

  13. Re #12. Yes, this could actually happen, in sharp contradistinction to a lot of other histrionic warnings being foisted on the public. You’d think we would have learned from Y2K. There are a few really bad things based on solid physics that could actually happen, but they don’t serve the goals of any powerful constituency, so they are ignored.

Leave a Reply